$N u=\frac{h L}{k}$
$B i=\frac{h L}{k}$
$\alpha=\frac{k}{\rho c_{p}}\left[\frac{m^{2}}{s}\right]$
$\operatorname{Pr}=\frac{v}{\alpha}$
$R e_{L}=\frac{u L}{v}=\frac{\rho u L}{\mu}$
$C=\frac{5}{9}(F-32)$
$h=\frac{N u \cdot k}{L}$
$F o=\frac{\alpha t}{L^{2}}$
$v=\frac{\mu}{\rho} \quad\left[\frac{m^{2}}{s}\right]$
For circular pipes:
$F=\frac{9}{5} C+32$
$R_{D}=\frac{4 \dot{m}}{\pi \mu D}=\frac{\rho u_{m} D}{\mu}$
$C=K+273$

Rate of heat generation by electrical resistance (p.19, p.126)

$$
\begin{array}{lllll}
q_{g} & =\dot{E}_{g}=I^{2} R_{e}^{\prime} L=I^{2} R_{e} & & R_{e} & {[\Omega]}
\end{array} R_{e}^{\prime} \quad\left[\frac{\Omega}{m}\right]
$$

$$
q_{g} \quad=E \cdot I
$$

(electrical power, p.401)
$\dot{q} \quad=\frac{\dot{E}_{g}}{V}=\frac{I^{2} R_{e}^{\prime} L}{V}=\frac{I^{2} R_{e}^{\prime}}{\left(\frac{\pi d^{2}}{4}\right)} \quad R_{e}=\rho_{e} \frac{L_{e}}{\left(\frac{\pi d^{2}}{4}\right)} \quad q=I^{2} R_{e}$
$\rho_{e} \quad$ electrical resistivity
$q \quad=\dot{m}_{b} \cdot h_{f g} \quad[W]$
vaporization (heating-off), p.120, p. 634

Heat to melt volume V
$Q \quad=m \cdot h_{i f}=(\rho V) \cdot h_{i f}[J]$
$\begin{array}{ll}\dot{m}_{b} & \begin{array}{l}\text { the rate at which liquid evaporates } \\ \text { from the free surface (boils-off) }\end{array}\end{array}\left[\frac{\mathrm{kg}}{\mathrm{s}}\right]$
$h_{i f} \quad$ latent heat
of fusion ($p .24)\left(h_{\text {ver-waerer }}=334\right)$

Characteristic Length $L_{c}=V / A_{s}$
for $B i=\frac{h L_{c}}{k}$ (Lumped Capacitance)
for $B i=\frac{h L_{c}}{k}$ (for Table 5.1 Approximate Solution)

Sphere

$$
A_{s}=\pi d^{2}=4 \pi r^{2}
$$

$$
V=\frac{\pi d^{3}}{6}=\frac{4}{3} \pi r^{3}
$$

$$
L_{c}=\frac{d}{6}=\frac{r}{3} \quad B i=\frac{h}{k} \frac{r}{3}
$$

$$
B i=\frac{h r}{k}
$$

Cylinder

Cone

$$
\begin{gathered}
\left\{\begin{array}{c}
s=\sqrt{r^{2}+H^{2}} \\
H \\
A_{s}=\pi r^{2}+\pi r s \\
d=2 r
\end{array} \quad V=\frac{1}{3} \pi r^{2} H\right.
\end{gathered}
$$

Linear Interpolation:

$$
P=P_{l}+\frac{P_{2}-P_{1}}{T_{2}-T_{1}} \cdot\left(T-T_{l}\right)
$$

